skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maiwald, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We report here the properties of single crystals of La 2 Ni 2 In . Electrical resistivity and specific heat measurements concur with the results of density functional theory calculations, finding that La 2 Ni 2 In is a weakly correlated metal, where the Ni magnetism is almost completely quenched, leaving only a weak Stoner enhancement of the density of states. Superconductivity is observed at temperatures below 0.9 K. A detailed analysis of the field and temperature dependencies of the resistivity, magnetic susceptibility, and specific heat at the lowest temperatures reveals that La 2 Ni 2 In is a dirty type-II superconductor with likely s -wave gap symmetry. Nanoclusters of ferromagnetic inclusions significantly affect the subgap states resulting in a nonexponential temperature dependence of the specific heat C ( T ) at T ≪ T c . 
    more » « less